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Topic

Reference

Recursion and
Backtracking

Ch.1 and Ch.2 JeffE

Dynamic Programming

Ch.3 JeffE and Ch.15 CLRS

Greedy Algorithms

Ch.4 JeffE and Ch.16 CLRS

Amortized Analysis

Ch.17 CLRS

Elementary Graph
algorithms

Ch.6 JeffE and Ch.22 CLRS

Minimum Spanning
Trees

Ch.7 JeffE and Ch.23 CLRS

Single-Source Shortest
Paths

Ch.8 JeffE and Ch.24 CLRS

All-Pairs Shortest Paths

Ch.9 JeffE and Ch.25 CLRS

Maximum Flow

Ch.10 JeffE and Ch.26 CLRS

String Matching

Ch.32 CLRS

NP-Completeness

Ch.12 JeffE and Ch.34 CLRS




Maximum Flow

+a graph-theoretic definition of flow networks
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flow

A flow in G is a real-valued function f : V X V — R that satisfies the
following three properties:

* Capacity constraint: Forallu,v € V, werequire f (u,v) < c(u,v).
* Skew symmetry: Forallu,v € V, werequire f (u,v) = —f (v,u).

* Flow conservation: Forallu € V — {s,t}, werequire },,cy f(u,v) =0
flow in equals flow out for vertex other than source and sink

The value of a flow f :
total flow out of the source (| f | = Xpev f (5, V))



maximum-flow problem

In the maximum-flow problem, we are given a flow network G with
source s and sink t, and we wish to find a flow of maximum value.



General method
How increase the value of flow

* FORD-FULKERSON-METHOD(G, s, t)

1 initialize flow fto O

2 while there exists an augmenting path p
3 do augment flow f along p

4 return f






Max-flow min-cut theorem

If £ 1s a flow in a flow network G = (V, E) with source s and sink 7, then the
following conditions are equivalent:

I. f 1samaximum flow in G.
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3. |fl=¢(S,T)forsomecut(S,T)of G.

2. The residual network G ; contains no augmenting paths.




basic Ford-Fulkerson algorithm
expands on the FORD-FULKERSONMETHOD

FORD-FULKERSON(G., s. 1)

1 for each edge (1, v) € E[G] runs in time O(E |f|)
2 do flu,v] <0

3 flv,u] < 0

4 while there exists a path p from s to 7 1n the residual network G

5 do cs(p) < min{cs(u, v) : (u,v)isin p}

6 for each edge (u, v) In p

i do flu,v] < flu,v]+cs(p)

8 flv.u]l < —flu, v]



The Edmonds-Karp algorithm

* implement the computation of the augmenting path p in line 4 with a
breadth-first search (each edge has unit distance (weight))

the augmenting path is a shortest path from s to t in the residual
network

the running time of the Edmonds-Karp algorithm is O(V E?)
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Theorem 26.9

If the Edmonds-Karp algorithm is run on a flow network G = (V, E') with
source s and sink t, then the total number of flow augmentations

performed by the algorithm is O(V E).



Maximum bipartite matching
+solve using flow network



The maximum matching problem

Given an undirected graph ¢ = (V,E),

a matching is a subset of edges M < FE such that for all vertices v
€ V, at most one edge of M is incident on v.

A maximum matching is a matching of maximum cardinality

avertex v € V is matched by matching M if some edge in M is incident on v;
otherwise, v is unmatched.



The maximume-bipartite-matching problem

 Bipartite graphs: the vertex set can be partitionedintoV = L U R,
where L and R are disjoint and all edges in E go between L and R.

(further assume that every vertex in I/ has at least one incident edge.)
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Finding a maximum bipartite matching

* We can use the Ford-Fulkerson method to find a maximum matching
in an undirected bipartite graph ¢ = (V,E) in time polynomial in
|V| and | E]|.

* First:

define the corresponding flow network G' = (V',E") for the bipartite
graph G



corresponding flow network

e Add source s and sink t as new vertices
eletV' =V U {s,t}.

* The directed edges of G'are :

* the edges of E, directed from Lto R (V = L U R), along with V new edges:

E' = {(s,u):uecl)
U{(u,v):ue L, veR, and (u, v) € E}
U{(v,t) : v eR}.

* assign unit capacity to each edge in E'.



The flow network corresponding to a bipartite graph
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The order of E' ?
|E| < |E

E'l = |El+ [VI< 3IEl, AE| = V| /2)

so |E'| = O(E).
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a matching in G corresponds directly to
a flow in G’s corresponding flow network

Lemma 26.10

Let G = (V. E) be a bipartite graph with vertex partition V' = L U R, and let
G" = (V', E’) be its corresponding flow network. If M is a matching in G, then
there is an integer-valued flow f in G" with value | f| = |[M|. Conversely, if f
is an integer-valued flow in G’, then there is a matching M in G with cardinality

M| =fl.
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maximum matching in a bipartite graph and
the value of a maximum flow

Theorem 26.11 (Integrality theorem)
[f the capacity function ¢ takes on only integral values, then the maximum flow f

produced by the Ford-Fulkerson method has the property that | f| is integer-valued.
Moreover, for all vertices «# and v, the value of f(u, v) i1s an integer.

Corollary 26.12
The cardinality of a maximum matching M in a bipartite graph G is the value of a

maximum flow f in its corresponding flow network G’.

20



Whole picture

e given a bipartite undirected graph G,

* creating the flow network G’

* running the Ford-Fulkerson method

e Obtaining a maximum matching M from the integer-valued maximum flow

* the value of the maximum flow in G" is O (V).
* Since any matching in a bipartite graph has cardinality at most min(L,R) = 0O(V),

* time complexity of finding a maximum matching in a bipartite graph
(since |E'| = O(E).)
- O(VE).



Compute the maximum bipartite matching

e i
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Sample problem set:



If all edges in a graph have distinct capacities, is there a unique
maximum flow?



* Describe an efficient algorithm to determine whether a given flow
network contains a unique maximum (s, t)-flow.

* Describe an efficient algorithm to determine whether a given flow
network contains a unigue minimum (s, t)-cut.

* Describe a flow network that contains a unique maximum (s, t)-flow
but does not contain a unigue minimum (s, t)-cut.

* Describe a flow network that contains a unique minimum (s, t)-cut
but does not contain a uniqgue maximum (s, t)-flow.



Let G = (V,E) be a bipartite graph with vertex partitionV = L U R,
and let G’ be its corresponding flow network. Give a good upper bound
on the length of any augmenting path found inG'during the execution
of FORD-FULKERSON.



A perfect matching is a matching in which every vertex is matched.

Let G = (V, E) be an undirected bipartite graph with vertex partition V =
L UR, where |L| = |R]|. For any X € V, define the neighborhood of X as

N(X)={y € V:(x y) € Efor some x € X}, that is, the set of vertices
adjacent to some member of X.

Prove Hall’s theorem: there exists a perfect matching in G if and only if
|A| < |N(A)| for every subset A € L.



